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This paper presents a pre-processing and a distance which improve the performance of machine learning al-

gorithms working on independent and identically distributed stochastic processes. We introduce a novel non-

parametric approach to represent random variables which splits apart dependency and distribution without

losing any information. We also propound an associated metric leveraging this representation and its statisti-

cal estimate. Besides experiments on synthetic datasets, the benefits of our contribution is illustrated through

the example of clustering financial time series, for instance prices from the credit default swaps market. Re-

sults are available on the website http://www.datagrapple.com and an IPython Notebook tutorial is available

at http://www.datagrapple.com/Tech for reproducible research.
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1. Introduction

Machine learning on time series is a booming field and as such

plenty of representations, transformations, normalizations, metrics

and other divergences are thrown at disposal to the practitioner. A

further consequence of the recent advances in time series mining is

that it is difficult to have a sober look at the state of the art since

many papers state contradictory claims as described in [10]. To be fair,

we should mention that when data, pre-processing steps, distances

and algorithms are combined together, they have an intricate behav-

ior making it difficult to draw unanimous conclusions especially in

a fast-paced environment. Restricting the scope of time series to in-

dependent and identically distributed (i.i.d.) stochastic processes, we

propound a method which, on the contrary to many of its counter-

parts, is mathematically grounded with respect to the clustering task

defined in Section 1.1. The representation we present in Section 2

exploits a property similar to the seminal result of copula theory,

namely Sklar’s theorem [36]. This approach leverages the specifici-

ties of random variables and this way solves several shortcomings of

more classical data pre-processing and distances that will be detailed

in Section 1.2. Section 3 is dedicated to experiments on synthetic and

real datasets to illustrate the benefits of our method which relies on

the hypothesis of i.i.d. sampling of the random variables. Synthetic
✩ This paper has been recommended for acceptance by Andrea Torsello.
∗ Corresponding author at: Hellebore Capital Management, 63 Avenue des Champs-

Elysées, Paris 75008, France. Tel.: +33155272770; fax: +33155272719.
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ime series are generated by a simple model yielding correlated ran-

om variables following different distributions. The presented ap-

roach is also applied to financial time series from the credit de-

ault swaps market whose prices dynamics are usually modeled by

andom walks according to the efficient-market hypothesis [12]. This

ataset seems more interesting than stocks as credit default swaps

re often considered as a gauge of investors’ fear, thus time series are

ubject to more violent moves and may provide more distributional

nformation than the ones from the stock market. We have made

ur detailed experiments (cf. Machine Tree on the website www.

atagrapple.com) and Python code available (www.datagrapple.com/

ech) for reproducible research. Finally, we conclude the paper

ith a discussion on the method and we propound future research

irections.

.1. Motivation and goal of study

Machine learning methodology usually consists in several pre-

rocessing steps aiming at cleaning data and preparing them for be-

ng fed to a battery of algorithms. Data scientists have the daunting

ission to choose the best possible combination of pre-processing,

issimilarity measure and algorithm to solve the task at hand among

profuse literature. In this article, we provide both a pre-processing

nd a distance for studying i.i.d. random processes which are com-

atible with basic machine learning algorithms.

Many statistical distances exist to measure the dissimilarity of two

andom variables, and therefore two i.i.d. random processes. Such

istances can be roughly classified in two families:

http://dx.doi.org/10.1016/j.patrec.2015.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.11.004&domain=pdf
mailto:gautier.marti@helleborecapital.com
http://www.datagrapple.com
http://www.datagrapple.com/Tech
http://dx.doi.org/10.1016/j.patrec.2015.11.004
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Fig. 1. Probability density functions of Gaussians N (−5, 1) and N (5, 1) (in green),

Gaussians N (−5, 3) and N (5, 3) (in red), and Gaussians N (−5, 10) and N (5, 10) (in

blue). Green, red and blue Gaussians are equidistant using L2 geometry on the parame-

ter space (μ, σ ). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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1. distributional distances, for instance [19,33] and [15], which fo-

cus on dissimilarity between probability distributions and quan-

tify divergences in marginal behaviors,

2. dependence distances, such as the distance correlation or copula-

based kernel dependency measures [32], which focus on the joint

behaviors of random variables, generally ignoring their distribu-

tion properties.

However, we may want to be able to discriminate random vari-

bles both on distribution and dependence. This can be motivated,

or instance, from the study of financial assets returns: are two per-

ectly correlated random variables (assets returns), but one being nor-

ally distributed and the other one following a heavy-tailed distribu-

ion, similar? From risk perspective, the answer is no [18], hence the

ropounded distance of this paper. We illustrate its benefits through

lustering, a machine learning task which primarily relies on the met-

ic space considered (data representation and associated distance).

esides clustering has found application in finance, e.g. [38], which

ives us a framework for benchmarking on real data.

Our objective is therefore to obtain a good clustering of random

ariables based on an appropriate and simple enough distance for

eing used with basic clustering algorithms, e.g. Ward hierarchical

lustering [41], k-means++ [1], affinity propagation [14].

By clustering we mean the task of grouping sets of objects in such

way that objects in the same cluster are more similar to each other

han those in different clusters. More specifically, a cluster of random

ariables should gather random variables with common dependence

etween them and with a common distribution. Two clusters should

iffer either in the dependency between their random variables or in

heir distributions.

A good clustering is a partition of the data that must be stable to

mall perturbations of the dataset. “Stability of some kind is clearly a

esirable property of clustering methods” [5]. In the case of random

ariables, these small perturbations can be obtained from resampling

20,22,27] in the spirit of the bootstrap method since it preserves the

tatistical properties of the initial sample [11].

Yet, practitioners and researchers pinpoint that state-of-the-art

esults of clustering methodology applied to financial times series are

ery sensitive to perturbations [21]. The observed unstability may re-

ult from a poor representation of these time series, and thus clusters

ay not capture all the underlying information.

.2. Shortcomings of a standard machine learning approach

A naive but often used distance between random variables to mea-

ure similarity and to perform clustering is the L2 distance E[(X −
)2]. Yet, this distance is not suited to our task.

xample 1 (Distance L2 between two Gaussians). Let (X, Y) be

bivariate Gaussian vector, with X ∼ N (μX , σ 2
X
), Y ∼ N (μY , σ 2

Y
)

nd whose correlation is ρ(X,Y ) ∈ [−1, 1]. We obtain E[(X − Y )2] =
(μX − μY )2 + (σX − σY )2 + 2σXσY (1 − ρ(X,Y )). Now, consider the

ollowing values for correlation:

• ρ(X,Y ) = 0, so E[(X − Y )2] = (μX − μY )2 + σ 2
X

+ σ 2
Y

. The two

variables are independent (since uncorrelated and jointly nor-

mally distributed), thus we must discriminate on distribution in-

formation. Assume μX = μY and σX = σY . For σX = σY � 1, we

obtain E[(X − Y )2] � 1 instead of the distance 0, expected from

comparing two equal Gaussians.
• ρ(X,Y ) = 1, so E[(X − Y )2] = (μX − μY )2 + (σX − σY )2. Since

the variables are perfectly correlated, we must discriminate on

distributions. We actually compare them with a L2 metric on the

mean × standard deviation half-plane. However, this is not an ap-

propriate geometry for comparing two Gaussians [6]. For instance,

if σX = σY = σ, we find E[(X − Y )2] = (μX − μY )2 for any values

of σ . As σ grows, probability attached by the two Gaussians to a
given interval grows similar (cf. Fig. 1), yet this increasing similar-

ity is not taken into account by this L2 distance.

E[(X − Y )2] considers both dependence and distribution informa-

ion of the random variables, but not in a relevant way with respect

o our task. Yet, we will benchmark against this distance since other

ore sophisticated distances on time series such as dynamic time

arping [3] and representations such as wavelets [31] or SAX [23]

ere explicitly designed to handle temporal patterns which are inex-

stant in i.i.d. random processes.

. A generic representation for random variables

Our purpose is to introduce a new data representation and a suit-

ble distance which takes into account both distributional proximi-

ies and joint behaviors.

.1. A representation preserving total information

Let (�,F , P) be a probability space. � is the sample space, F is

he σ -algebra of events, and P is the probability measure. Let V be

he space of all continuous real-valued random variables defined on

(�,F , P). Let U be the space of random variables following a uniform

istribution on [0, 1] and G be the space of absolutely continuous cu-

ulative distribution functions (cdf).

efinition 1 (The copula transform). Let X = (X1, . . . , XN) ∈ VN be

random vector with cdfs GX = (GX1
, . . . , GXN

) ∈ GN . The random

ector GX (X ) = (GX1
(X1), . . . , GXN

(XN)) ∈ UN is known as the copula

ransform.

roperty 1 (Uniform margins of the copula transform). GXi
(Xi), 1 ≤ i

N, are uniformly distributed on [0, 1].

roof. x = GXi
(G−1

Xi
(x)) = P(Xi ≤ G−1

Xi
(x)) = P(GXi

(Xi) ≤ x). �

We define the following representation of random vectors that ac-

ually splits the joint behaviors of the marginal variables from their

istributional information.

efinition 2 (dependence ⊕ distribution space projection). Let T be

mapping which transforms X = (X1, . . . , XN) into its generic repre-

entation, an element of UN × GN representing X, defined as follow

: VN → UN × GN (1)

X 	→ (GX (X ), GX ).



26 P. Donnat et al. / Pattern Recognition Letters 70 (2016) 24–31

Fig. 2. ArcelorMittal and Société générale prices (T observations (Xt
1, Xt

2)T
t=1 from (X1, X2) ∈ V2) are projected on dependence ⊕ distribution space; (GX1

(X1), GX2
(X2)) ∈ U2 encode

the dependence between X1 and X2 (a perfect correlation would be represented by a sharp diagonal on the scatterplot); (GX1
, GX2

) are the margins (their log-densities are displayed

above), notice their heavy-tailed exponential distribution (especially for ArcelorMittal).
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Property 2. T is a bijection.

Proof. T is surjective as any element (U, G) ∈ UN × GN has the fiber

G−1(U). T is injective as (U1, G1) = (U2, G2) a.s. in UN × GN implies

that they have the same cdf G = G1 = G2 and since U1 = U2 a.s., it fol-

lows that G−1(U1) = G−1(U2) a.s. �

This result replicates the seminal result of copula theory, namely

Sklar’s theorem [36], which asserts one can split the dependency and

distribution apart without losing any information. Fig. 2 illustrates

this projection for N = 2.

2.2. A distance between random variables

We leverage the propounded representation to build a suitable yet

simple distance between random variables which is invariant under

diffeomorphism.

Definition 3 (Distance dθ between two random variables). Let θ ∈ [0,

1]. Let (X,Y ) ∈ V2. Let G = (GX , GY ), where GX and GY are respectively

X and Y marginal cdfs. We define the following distance

d2
θ (X,Y ) = θd2

1(GX (X ), GY (Y )) + (1 − θ )d2
0(GX , GY ), (2)

where

d2
1(GX (X ), GY (Y )) = 3E[|GX (X ) − GY (Y )|2], (3)

and

d2
0(GX , GY ) = 1

2

∫
R

(√
dGX

dλ
−

√
dGY

dλ

)2

dλ. (4)

In particular, d0 = √
1 − BC is the Hellinger distance related to

the Bhattacharyya (1/2-Chernoff) coefficient BC upper bounding the

Bayes’ classification error. To quantify distribution dissimilarity, d0 is

used rather than the more general α-Chernoff divergences since it

satisfies the properties [3,4,5] (significant for practitioners). In ad-

dition, dθ can thus be efficiently implemented as a scalar product.

d1 =
√

(1 − ρS)/2 is a distance correlation measuring statistical de-

pendence between two random variables, where ρS is the Spear-

man’s correlation between X and Y. Notice that d1 can be expressed by

using the copula C: [0, 1]2 → [0, 1] implicitly defined by the relation

G(X,Y ) = C(GX (X ), GY (Y )) since ρS(X,Y ) = 12
∫ 1

0

∫ 1
0 C(u, v) du dv −

3 [13].

Example 2 (Distance dθ between two Gaussians). Let (X, Y) be a bi-

variate Gaussian vector, with X ∼ N (μX , σ 2
X ), Y ∼ N (μY , σ 2

Y ) and

ρ(X,Y ) = ρ . We obtain,
2
θ (X,Y ) = θ

1 − ρS

2
+ (1 − θ )

(
1 −

√
2σXσY

σ 2
X

+ σ 2
Y

e
− 1

4

(μX −μY )2

σ2
X

+σ2
Y

)
.

Remember that for perfectly correlated Gaussians (ρ = ρS = 1),

e want to discriminate on their distributions. We can observe that

• for σX , σY → +∞, then d0(X, Y) → 0, it alleviates a main short-

coming of the basic L2 distance which is diverging to +∞ in this

case;
• if μX �= μY, for σ X, σ Y → 0, then d0(X, Y) → 1, its maximum value,

i.e. it means that two Gaussians cannot be more remote from each

other than two different Dirac delta functions.

We will refer to the use of this distance as the generic parametric

epresentation (GPR) approach. GPR distance is a fast and good proxy

or distance dθ when the first two moments μ and σ predominate.

onetheless, for datasets which contain heavy-tailed distributions,

PR fails to capture this information.

roperty 3. Let θ ∈ [0, 1]. The distance dθ verifies 0 ≤ dθ ≤ 1.

roof. Let θ ∈ [0, 1]. We have

(i) 0 ≤ d0 ≤ 1, property of the Hellinger distance;

(ii) 0 ≤ d1 ≤ 1, since −1 ≤ ρS ≤ 1.

Finally, by convex combination, 0 ≤ dθ ≤ 1. �

roperty 4. For 0 < θ < 1, dθ is a metric.

roof. Let (X,Y ) ∈ V2. For 0 < θ < 1, dθ is a metric, and the only non-

rivial property to verify is the separation axiom

(i) X = Y a.s. ⇒ dθ (X,Y ) = 0

X = Y a.s. ⇒ d1(GX (X ), GY (Y )) = d0(GX , GY ) = 0, and thus

dθ (X,Y ) = 0,

(ii) dθ (X,Y ) = 0 ⇒ X = Y a.s.

dθ (X,Y ) = 0 ⇒ d1(GX (X ), GY (Y )) = 0 and d0(GX , GY ) = 0 ⇒
GX (X ) = GY (Y ) a.s. and GX = GY . Since G is absolutely continu-

ous, it follows X = Y a.s.

Notice that for θ ∈ {0, 1}, this property does not hold. Let U ∈ V,

∼ U[0, 1]. U �= 1 − U but d0(U, 1 − U) = 0. Let V ∈ V . V �= 2V but

1(V, 2V ) = 0. �

roperty 5. Diffeomorphism invariance. Let h : V → V be a diffeo-

orphism. Let (X,Y ) ∈ V2. Distance dθ is invariant under diffeomor-

hism, i.e.

θ (h(X ), h(Y )) = dθ (X,Y ). (5)
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roof. From definition, we have

2
0(h(X ), h(Y )) = 1 −

∫
R

√
dGh(X )

dλ

dGh(Y )

dλ
dλ (6)

nd since

dGh(X )

dλ
(λ) = 1

h′(h−1(λ)
) dGX

dλ

(
h−1(λ)

)
, (7)

e obtain

2
0(h(X ), h(Y )) = 1 −

∫
R

1

h′(h−1(λ)
)
√

dGX

dλ

dGY

dλ

(
h−1(λ)

)
dλ

= d2
0(X,Y ). (8)

n addition, ∀x ∈ R, we have

h(X )(h(x)) = P[h(X ) ≤ h(x)]

=
{

P[X ≤ x] = GX (x), if h increasing

1 − P[X ≤ x] = 1 − GX (x), otherwise
(9)

hich implies that

2
1(h(X ), h(Y )) = 3E

[|Gh(X )(h(X )) − Gh(Y )(h(Y ))|2
]

= 3E

[|GX (X ) − GY (Y )|2
]

= d2
1(X,Y ). (10)

inally, we obtain Property 5 by definition of dθ . �

Thus, dθ is invariant under monotonic transformations, a desirable

roperty as it ensures to be insensitive to scaling (e.g. choice of units)

r measurement scheme (e.g. device, mathematical modeling) of the

nderlying phenomenon.

.3. A non-parametric statistical estimation of dθ

To apply the propounded distance dθ on sampled data without

arametric assumptions, we have to define its statistical estimate
˜
θ working on realizations of the i.i.d. random variables. Distance

1 working with continuous uniform distributions can be approxi-

ated by normalized rank statistics yielding to discrete uniform dis-

ributions, in fact coordinates of the multivariate empirical copula [7]

hich is a non-parametric estimate converging uniformly toward the

nderlying copula [8]. Distance d0 working with densities can be ap-

roximated by using its discrete form working on histogram density

stimates.

efinition 4 (The empirical copula transform). Let XT =
(Xt

1
, . . . , Xt

N
), t = 1, . . . , T, be T observations from a ran-

om vector X = (X1, . . . , XN) with continuous margins GX =
(GX1

(X1), . . . , GXN
(XN)). Since one cannot directly obtain the cor-

esponding copula observations (GX1
(Xt

1
), . . . , GXN

(Xt
N
)) without

nowing a priori GX, one can instead estimate the N empirical

argins GT
Xi
(x) = 1

T

∑T
t=1 1(Xt

i
≤ x) to obtain T empirical observa-

ions (GT
X1

(Xt
1
), . . . , GT

XN
(Xt

N
)) which are thus related to normalized

ank statistics as GT
Xi
(Xt

i
) = X (t)

i
/T, where X (t)

i
denotes the rank of

bservation Xt
i
.

efinition 5 (Empirical distance). Let (Xt )T
t=1

and (Yt )T
t=1

be T re-

lizations of real-valued random variables X,Y ∈ V respectively. An

mpirical distance between realizations of random variables can be

efined by

2̃
θ

(
(Xt )T

t=1, (Y t )T
t=1

) a.s.= θ d̃2
1 + (1 − θ )d̃2

0, (11)

here

2̃
1 = 3

T (T 2 − 1)

T∑
t=1

(
X (t) − Y (t)

)2
(12)
nd

2̃
0 = 1

2

+∞∑
k=−∞

(√
gh

X
(hk) −

√
gh

Y
(hk)

)2

, (13)

being here a suitable bandwidth, and gh
X
(x) = 1

T

∑T
t=1 1(� x

h
�h ≤

t < (� x
h
� + 1)h) being a density histogram estimating pdf gX from

(Xt )T
t=1

, T realizations of random variable X ∈ V .

We will refer henceforth to this distance and its use as the generic

on-parametric representation (GNPR) approach. To use effectively

θ and its statistical estimate, it boils down to select a particular

alue for θ . We suggest here an exploratory approach where one can

est (i) distribution information (θ = 0), (ii) dependence information

θ = 1), and (iii) a mix of both information (θ = 0.5). Ideally, θ should

eflect the balance of dependence and distribution information in the

ata. In a supervised setting, one could select an estimate θ̂ of the

ight balance θ� optimizing some loss function by techniques such

s cross-validation. Yet, the lack of a clear loss function makes the

stimation of θ� difficult in an unsupervised setting. For clustering,

any authors [20,26,34,35] suggest stability as a tool for parameter

election. But, [2] warn against its irrelevant use for this purpose. Be-

ides, we already use stability for clustering validation and we want

o avoid overfitting. Finally, we think that finding an optimal trade-

ff θ� is important for accelerating the rate of convergence toward

he underlying ground truth when working with finite and possibly

mall samples, but ultimately lose its importance asymptotically as

oon as 0 < θ < 1.

. Experiments and applications

.1. Synthetic datasets

We propose the following model for testing the efficiency of the

NPR approach: N time series of length T which are subdivided into

correlation clusters themselves subdivided into D distribution clus-

ers.

Let (Yk)
K
k=1

, be K i.i.d. random variables. Let p, D ∈ N. Let N = pKD.

et (Zi
d
)D

d=1
, 1 ≤ i ≤ N, be independent random variables. For 1 ≤ i ≤

, we define

i =
K∑

k=1

βk,iYk +
D∑

d=1

αd,iZ
i
d, (14)

here

(a) αd,i = 1, if i ≡ d − 1 (mod D), 0 otherwise;

(b) β ∈ [0, 1],

(c) βk,i = β, if �iK/N� = k, 0 otherwise.

(Xi)
N
i=1

are partitioned into Q = KD clusters of p random variables

ach. Playing with the model parameters, we define in Table 1 some

nteresting test case datasets to study distribution clustering, depen-

ence clustering or a mix of both. We use the following notations as

shorthand

(a) L := Laplace(0, 1/
√

2)

(b) S := t-distribution(3)/
√

3

Since L and S have both a mean of 0 and a variance of 1, GPR can-

ot find any difference between them, but GNPR can discriminate on

igher moments as it can be seen in Fig. 3.

.2. Performance of clustering using GNPR

We empirically show that the GNPR approach achieves better re-

ults than others using common distances regardless of the algorithm

sed on the defined test cases A, B and C described in Table 1. Test

ase A illustrates datasets containing only distribution information:
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Table 1

Model parameters for some interesting test case datasets.

Clustering Dataset N T Q K β Yk Zi
1 Zi

2 Zi
3 Zi

4

Distribution A 200 5000 4 1 0 N (0, 1) N (0, 1) L S N (0, 2)

Dependence B 200 5000 10 10 0.1 S S S S S
Mix C 200 5000 10 5 0.1 N (0, 1) N (0, 1) S N (0, 1) S

G 32, . . . , 640 10, . . . , 2000 32 8 0.1 N (0, 1) N (0, 1) N (0, 2) L S

Fig. 3. GPR and GNPR distance matrices. Both GPR and GNPR highlight the 5 corre-

lation clusters (θ = 1), but only GNPR finds the 2 distributions (S and L) subdividing

them (θ = 0). Finally, by combining both information GNPR (θ = 0.5) can highlight the

10 original clusters, while GPR (θ = 0.5) simply adds noise on the correlation distance

matrix it recovers.

Fig. 4. Distance matrices obtained on dataset C using distance correlation, L2 distance,

GPR and GNPR. None but GNPR highlights the 10 original clusters which appear on its

diagonal.

Table 2

Comparison of distance correlation, L2 distance, GPR and GNPR: GNPR ap-

proach improves clustering performance.

Algo. Distance Adjusted rand index

A B C

HC-AL (1 − ρ)/2 0.00 ± 0.01 0.99 ± 0.01 0.56 ± 0.01

E[(X − Y )2] 0.00 ± 0.00 0.09 ± 0.12 0.55 ± 0.05

GPR θ = 0 0.34 ± 0.01 0.01 ± 0.01 0.06 ± 0.02

GPR θ = 1 0.00 ± 0.01 0.99 ± 0.01 0.56 ± 0.01

GPR θ = .5 0.34 ± 0.01 0.59 ± 0.12 0.57 ± 0.01

GNPR θ = 0 1 0.00 ± 0.00 0.17 ± 0.00

GNPR θ = 1 0.00 ± 0.00 1 0.57 ± 0.00

GNPR θ = .5 0.99 ± 0.01 0.25 ± 0.20 0.95 ± 0.08

KM++ (1 − ρ)/2 0.00 ± 0.01 0.60 ± 0.20 0.46 ± 0.05

E[(X − Y )2] 0.00 ± 0.00 0.34 ± 0.11 0.48 ± 0.09

GPR θ = 0 0.41 ± 0.03 0.01 ± 0.01 0.06 ± 0.02

GPR θ = 1 0.00 ± 0.00 0.45 ± 0.11 0.43 ± 0.09

GPR θ = .5 0.27 ± 0.05 0.51 ± 0.14 0.48 ± 0.06

GNPR θ = 0 0.96 ± 0.11 0.00 ± 0.01 0.14 ± 0.02

GNPR θ = 1 0.00 ± 0.01 0.65 ± 0.13 0.53 ± 0.02

GNPR θ = .5 0.72 ± 0.13 0.21 ± 0.07 0.64 ± 0.10

AP (1 − ρ)/2 0.00 ± 0.00 0.99 ± 0.07 0.48 ± 0.02

E[(X − Y )2] 0.14 ± 0.03 0.94 ± 0.02 0.59 ± 0.00

GPR θ = 0 0.25 ± 0.08 0.01 ± 0.01 0.05 ± 0.02

GPR θ = 1 0.00 ± 0.01 0.99 ± 0.01 0.48 ± 0.02

GPR θ = .5 0.06 ± 0.00 0.80 ± 0.10 0.52 ± 0.02

GNPR θ = 0 1 0.00 ± 0.00 0.18 ± 0.01

GNPR θ = 1 0.00 ± 0.01 1 0.59 ± 0.00

GNPR θ = .5 0.39 ± 0.02 0.39 ± 0.11 1

h

(

p

t

t

b

a

c

there are 4 clusters of distributions. Test case B illustrates datasets

containing only dependence information: there are 10 clusters of cor-

relation between random variables which are heavy-tailed. Test case

C illustrates datasets containing both information: it consists in 10

clusters composed of 5 correlation clusters and each of them is di-

vided into 2 distribution clusters. Using scikit-learn implementation

[30], we apply 3 clustering algorithms with different paradigms: a
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Fig. 5. Empirical consistency of clus
ierarchical clustering using average linkage (HC-AL), k-means++
KM++), and affinity propagation (AP). Experiment results are re-

orted in Table 2. GNPR performance is due to its proper representa-

ion (cf. Fig. 4). Finally, we have noticed increasing precision of clus-

ering using GNPR as time T grows to infinity, all other parameters

eing fixed. The number of time series N seems rather uninformative

s illustrated in Fig. 5 (left) which plots ARI [16] between computed

lustering and ground-truth of dataset G as an heatmap for varying N
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T
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tering using GNPR as T → ∞.
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Fig. 6. Standard Deviation Histogram. The 4 clusters found using GNPR θ = 0 repre-

sented by the 4 colors fit precisely the multi-modal distribution of standard deviations.

Fig. 7. Centered Rank Correlation Distance Matrix. GNPR θ = 1 exhibits a hierarchi-

cal structure of correlations: first level consists in Europe, Japan and US; second level

corresponds to credit quality (investment grade or high yield); third level to industrial

sectors.
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nd T. Fig. 5 (right) shows the convergence to the true clustering as a

unction of T.

.3. Application to financial time series clustering

.3.1. Clustering assets: a (too) strong focus on correlation

It has been noticed that straightfoward approaches automatically

iscover sector and industries [24]. Since detected patterns are bla-

antly correlation-flavoured, it prompted econophysicists to focus on

orrelations, hierarchies and networks [40] from the Minimum Span-

ing Tree and its associated clustering algorithm the Single Linkage

o the state of the art [28] exploiting the topological properties of the

lanar Maximally Filtered Graph [39] and its associated algorithm the

irected Bubble Hierarchical Tree (DBHT) technique [37]. In practice,

conophysicists consider the assets log returns and compute their

orrelation matrix. The correlation matrix is then filtered thanks to

clustering of the correlation-network [9] built using similarity and

issimilarity matrices which are derived from the correlation one

y convenient ad hoc transformations. Clustering these correlation-

ased networks [29] aims at filtering the correlation matrix for stan-

ard portfolio optimization [38]. Yet, adopting similar approaches

nly allow to retrieve information given by assets co-movements and

othing about the specificities of their returns behavior, whereas we

ay also want to distinguish assets by their returns distribution. For

xample, we are interested to know whether they undergo fat tails,

nd to which extent.

.3.2. Clustering credit default swaps

We apply the GNPR approach on financial time series, namely

aily credit default swap [17] (CDS) prices. We consider the N = 500

ost actively traded CDS according to DTCC (http://www.dtcc.com/).

or each CDS, we have T = 2300 observations corresponding to his-

orical daily prices over the last 9 years, amounting for more than

ne million data points. Since credit default swaps are traded over-

he-counter, closing time for fixing prices can be arbitrarily chosen,

ere 5pm GMT, i.e. after the London Stock Exchange trading session.

his synchronous fixing of CDS prices avoids spurious correlations

rising from different closing times. For example, the use of close-to-

lose stock prices artificially overestimates intra-market correlation

nd underestimates inter-market dependence since they have differ-

nt trading hours [25]. These CDS time series can be consulted on the

eb portal http://www.datagrapple.com/.

Assuming that CDS prices (Pt)t ≥ 1 follow random walks, their in-

rements 
Pt = Pt − Pt−1 are i.i.d. random variables, and therefore

he GNPR approach can be applied to the time series of prices varia-

ions, i.e. on data (
Pt
1
, . . . ,
Pt

N
), t = 1, . . . , T . Thus, for aggregating

DS prices time series, we use a clustering algorithm (for instance,

ard’s method [41]) based on the GNPR distance matrices between

heir variations.

Using GNPR θ = 0, we look for distribution information in our CDS

ataset. We observe that clustering based on the GNPR θ = 0 distance

atrix yields 4 clusters which fit precisely the multi-modal empiri-

al distribution of standard deviations as can be seen in Fig. 6. For

NPR θ = 1, we display in Fig. 7 the rank correlation distance matrix

btained. We can notice its hierarchical structure already described

n many papers, e.g. [4,24], focusing on stock markets. There is in-

ormation in distribution and in correlation, thus taking into account

oth information, i.e. using GNPR θ = 0.5, should lead to a meaning-

ul clustering. We verify this claim by using stability as a criterion

or validation. Practically, we consider even and odd trading days and

erform two independent clusterings, one on even days and the other

ne on odd days. We should obtain the same partitions. In Fig. 8, we

isplay the partitions obtained using the GNPR θ = 0.5 approach next

o the ones obtained by applying a L2 distance on prices returns. We

nd that GNPR clustering is more stable than L on returns cluster-
2
ng. Moreover, clusters obtained from GNPR are more homogeneous

n size.

To conclude on the experiments, we have highlighted through

lustering that the presented approach leveraging dependence and

istribution information leads to better results: finer partitions on

ynthetic test cases and more stable partitions on financial time

eries.

. Discussion

In this paper, we have exposed a novel representation of ran-

om variables which could lead to improvements in applying ma-

hine learning techniques on time series describing underlying i.i.d.

tochastic processes. We have empirically shown its relevance to deal

ith random walks and financial time series. We have led a large

cale experiment on the credit derivatives market notorious for not

aving Gaussian but heavy-tailed returns, first results are available

n website www.datagrapple.com. We also intend to lead such clus-

ering experiments for testing applicability of the method to areas

utside finance. On the theoretical side, we plan to improve the ag-

regation of the correlation and distribution part by using elements

f information geometry theory and to study the consistency prop-

rty of our method.

http://www.dtcc.com/
http://www.datagrapple.com/
http://www.datagrapple.com
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Fig. 8. Better clustering stability using the GNPR approach: GNPR θ = 0.5 achieves ARI = 0.85; L2 on returns achieves ARI 0.64; The two leftmost partitions built from GNPR on

the odd/even trading days sampling look similar: only a few CDS are switching from clusters; The two rightmost partitions built using a L2 on returns display very inhomogeneous

(odd-2,3,9 vs. odd-4,14,15) and unstable (even-1 splitting into odd-3 and odd-2) clusters.
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